当前位置:编程学习 > 网站相关 >>

UFLDL练习(PCA and Whitening && Softmax Regression)

softmax纠结了两天,原因是自己不小心改了主程序
还是照例只是贴贴代码,如果你有需要的话可以去看UFLDL的教程
至于效果和UFLDL都是一样的,我就不重复贴图了啊,ps:代码是matlab的,不是python的
PCA and Whitening:
pca_gen.m
[python] 
%%================================================================  
x = sampleIMAGESRAW();  
figure('name','Raw images');  
randsel = randi(size(x,2),200,1); % A random selection of samples for visualization  
display_network(x(:,randsel));  
%%================================================================  
avg = mean(x,2);  
x =  x - repmat(avg,1,size(x,2));  
%%================================================================  
xRot = zeros(size(x)); % You need to compute this  
[u,s,v]=svd(x);  
xRot = u'*x;  
%%================================================================  
covar = zeros(size(x, 1)); % You need to compute this  
covar = diag(diag(cov(x')));  
%%================================================================  
figure('name','Visualisation of covariance matrix');  
imagesc(covar);  
%%================================================================  
k = 0; % Set k accordingly  
egis=eig(covar)  
egis=sort(egis,'descend')  
for i=1:size(covar,1)  
    if (sum(egis(1:i))/sum(egis)>0.99)  
         k=i  
        break;  
    end  
end  
%%================================================================  
%%================================================================  
  
xHat = zeros(size(x));  % You need to compute this  
xHat = u*[xRot(1:k,:);zeros(size(xHat(k+1:end,:)))];  
  
% Visualise the data, and compare it to the raw data  
% You should observe that the raw and processed data are of comparable quality.  
% For comparison, you may wish to generate a PCA reduced image which  
% retains only 90% of the variance.  
  
figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, 1)),'']);  
display_network(xHat(:,randsel));  
figure('name','Raw images');  
display_network(x(:,randsel));  
  
%%================================================================  
%% Step 4a: Implement PCA with whitening and regularisation  
%  Implement PCA with whitening and regularisation to produce the matrix  
%  xPCAWhite.   
  
epsilon = 0.1;  
xPCAWhite = zeros(size(x));  
avg = mean(x, 1);     % Compute the mean pixel intensity value separately for each patch.   
x = x - repmat(avg, size(x, 1), 1);  
sigma = x * x' / size(x, 2);  
[U,S,V] = svd(sigma);  
xRot = U' * x;          % rotated version of the data.   
xTilde = U(:,1:k)' * x; % reduced dimension representation of the data,   
                        % where k is the number of eigenvectors to keep  
xPCAWhite = diag(1./sqrt(diag(S) + epsilon)) * U' * x;  
%%================================================================  
  
% Visualise the covariance matrix. You should see a red line across the  
% diagonal against a blue background.  
covar = diag(diag(cov(xPCAWhite')));  
figure('name','Visualisation of covariance matrix');  
imagesc(covar);  
  
%%================================================================  
xZCAWhite = zeros(size(x));  
xZCAWhite = U * diag(1./sqrt(diag(S) + epsilon)) * U' * x;  
%%================================================================  
figure('name','ZCA whitened images');  
display_network(xZCAWhite(:,randsel));  
figure('name','Raw images');  
display_network(x(:,randsel));  
 
Softmax Regression
softmaxCost.m
[python]  
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)  
  
% numClasses - the number of classes   
% inputSize - the size N of the input vector  
% lambda - weight decay parameter  
% data - the N x M input matrix, where each column data(:, i) corresponds to  
%        a single test set  
% labels - an M x 1 matrix containing the labels corresponding for the input data  
%  
  
% Unroll the parameters from theta  
theta = reshape(theta, numClasses, inputSize);  
  
numCases = size(data, 2);  
  
groundTruth = full(sparse(labels, 1:numCases, 1));  %numClasses*M  
cost = 0;  
  
thetagrad = zeros(numClasses, inputSize);  
  
  
M = theta*data;     % (numClasses,N)*(N,M)  
M = bsxfun(@minus, M, max(M, [], 1));  
h = exp(M);  
h =  bsxfun(@rdivide, h, sum(h));  
cost = -1/numCases*sum(sum(groundTruth.*log(h)))+lambda/2*sum(sum(theta.^2));  
thetagrad = -1/numCases*((groundTruth-h)*data')+lambda*theta;%log(h)  
下面一段是关键部分没有Vectorization版本的代码  
%for i=1:numCases  
%       s=groundTruth(:,i).*log(h(:,i));  
%      cost=cost+sum(s);  
%end  
%cost=cost*(-1)/numCases+lambda/2*sum(sum(theta.^2));  
%for i=1:numClasses  
%    for j=1:numCases  
%        %groundTruth(:,j)  
%        %h(:,j)  
%        k=((groundTruth(:,j)-h(:,j))*data(:,j)');  
%          
%        thetagrad(i,:)=thetagrad(i,:)+k(i,:);  
%    end  
%     thetagrad(i,:)=-thetagrad(i,:)/numCases+lambda*theta(i,:);  
%end  
  
  
  
  
grad = [thetagrad(:)];  
end  
 
补充:Web开发 , Python ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,