zoj 3725 Painting Storages
ZOJ Problem Set - 3725
Painting Storages
Time Limit: 2 Seconds Memory Limit: 65536 KB
There is a straight highway with N storages alongside it labeled by1,2,3,...,N. Bob asks you to paint all storages with two colors: red and blue. Each storage will be painted with exactly one color.
Bob has a requirement: there are at least M continuous storages (e.g. "2,3,4" are 3 continuous storages) to be painted with red. How many ways can you paint all storages under Bob's requirement?
Input
There are multiple test cases.
Each test case consists a single line with two integers: N and M (0<N, M<=100,000).
Process to the end of input.
Output
One line for each case. Output the number of ways module 1000000007.
Sample Input
4 3
Sample Output
3
这道动态规划的题知道怎么做了会很简单主要分两种情况
1.前dp[i-1]个仓库成立,dp[i]就可以任意选择,dp[i]=d[i-1]*2;
2.前的dp[i-1]个仓库不成立,加上第i个刚好成立,则[i-m+1,i]必须染成红色,另外第i-m个就必须为蓝色,
与[i-m+1,i]不同所以就可以得出状态方程dp[i]=dp[i-1]*2+(i-m-1的全排列)-dp[i-m-1]
*************LHHHHHHH
i-m I
前i-m-1个必须不满足条件所以全排列减去dp[i-m-1]就得到了不成立的情况
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int N = 10005; int mod = 100000007; int dp[N],pow[N]={1}; int main() { int n,m; for(int i=1;i<N;i++) pow[i] = pow[i-1] * 2 % mod;//计算全排列 while(scanf("%d%d",&n,&m)) { memset(dp,0,sizeof(dp)); dp[m] = 1;//m的时候为1只有一种情况,所以下面从m+1开始 for(int i=m+1;i<=n;i++) dp[i] = ((dp[i-1] * 2 % mod + pow[i-m-1] - dp[i-m-1]) % mod + mod) % mod; printf("%d\n",dp[n]); } return 0; }
补充:软件开发 , C++ ,