当前位置:编程学习 > C/C++ >>

zoj 3725 Painting Storages

 
ZOJ Problem Set - 3725
Painting Storages
Time Limit: 2 Seconds      Memory Limit: 65536 KB
There is a straight highway with N storages alongside it labeled by1,2,3,...,N. Bob asks you to paint all storages with two colors: red and blue. Each storage will be painted with exactly one color.
Bob has a requirement: there are at least M continuous storages (e.g. "2,3,4" are 3 continuous storages) to be painted with red. How many ways can you paint all storages under Bob's requirement?
Input
There are multiple test cases.
Each test case consists a single line with two integers: N and M (0<N, M<=100,000).
Process to the end of input.
Output
One line for each case. Output the number of ways module 1000000007.
Sample Input
4 3 
Sample Output
3
这道动态规划的题知道怎么做了会很简单主要分两种情况
1.前dp[i-1]个仓库成立,dp[i]就可以任意选择,dp[i]=d[i-1]*2;
2.前的dp[i-1]个仓库不成立,加上第i个刚好成立,则[i-m+1,i]必须染成红色,另外第i-m个就必须为蓝色,
与[i-m+1,i]不同所以就可以得出状态方程dp[i]=dp[i-1]*2+(i-m-1的全排列)-dp[i-m-1]
*************LHHHHHHH
               i-m             I
前i-m-1个必须不满足条件所以全排列减去dp[i-m-1]就得到了不成立的情况
 
#include <stdio.h>  
#include <string.h>  
#include <algorithm>  
  
using namespace std;  
  
int N = 10005;  
 int mod = 100000007;  
  
int dp[N],pow[N]={1};  
  
int main()  
{  
    int n,m;  
    for(int i=1;i<N;i++)  
        pow[i] = pow[i-1] * 2 % mod;//计算全排列  
    while(scanf("%d%d",&n,&m))  
    {  
        memset(dp,0,sizeof(dp));  
        dp[m] = 1;//m的时候为1只有一种情况,所以下面从m+1开始  
        for(int i=m+1;i<=n;i++)  
            dp[i] = ((dp[i-1] * 2 % mod + pow[i-m-1] - dp[i-m-1]) % mod + mod) % mod;  
        printf("%d\n",dp[n]);  
    }  
    return 0;  
}  

 

 
补充:软件开发 , C++ ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,