当前位置:编程学习 > C/C++ >>

hdu3694 Fermat Point in Quadrangle 费马点

题意:给出四个点构成四边形(不按顺序给),求费马距离。
 
1.因为只有四个点,当这四个点可以构成凸四边形时(如图):对角线形成的交点是费马点。就是点1,根据三角形的两边大于第三边可证明。
 
2.当不能构成凸多边形时,就是那个凹点是费马点(如图):同理可证。
 
代码如下://有点难看 TT
[cpp] 
#include<cstdio> 
#include<iostream> 
#include<math.h> 
#define eps 1e-8 
using namespace std; 
 
const int maxn=4; 
struct point{double x,y;}points[maxn]; 
int n=4; 
 
double dis(point p1,point p2) 

    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); 

double alldis(point tmp) 

    double sum=0; 
    int i; 
    for(i=0;i<n;i++) 
    { 
        sum+=dis(tmp,points[i]); 
    } 
    return sum; 

 
double xmult(point p1,point p2,point p0) 

    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); 

point intersection(point p1,point p2,point p3,point p4) 

    point ret=p1; 
    double t=((p1.x-p3.x)*(p3.y-p4.y)-(p1.y-p3.y)*(p3.x-p4.x)) 
        /((p1.x-p2.x)*(p3.y-p4.y)-(p1.y-p2.y)*(p3.x-p4.x)); 
    ret.x+=(p2.x-p1.x)*t; 
    ret.y+=(p2.y-p1.y)*t; 
    return ret; 

 
double min(double a,double b) 

    return a>b? b:a; 

int main() 

    while(1) 
    { 
        int i; 
        for(i=0;i<4;i++) 
            scanf("%lf%lf",&points[i].x,&points[i].y); 
        if(points[0].x==-1&&points[1].x==-1&&points[2].x==-1&&points[3].x==-1&& 
            points[0].y==-1&&points[1].y==-1&&points[2].y==-1&&points[3].y==-1)break; 
         
        double res=0; 
        double minn=1000000000; 
        for(i=0;i<n;i++) 
        { 
            res=alldis(points[i]); 
            minn=min(minn,res); 
        } 
        if(xmult(points[0],points[1],points[3])*xmult(points[2],points[1],points[3])<0) 
        { 
            point ans=intersection(points[0],points[2],points[1],points[3]); 
            res=alldis(ans); 
            minn=min(minn,res); 
             
        } 
        if(xmult(points[1],points[2],points[3])*xmult(points[0],points[2],points[3])<0) 
        { 
            point ans=intersection(points[1],points[0],points[2],points[3]); 
            res=alldis(ans); 
            minn=min(minn,res); 
        } 
        if(xmult(points[2],points[0],points[3])*xmult(points[1],points[0],points[3])<0) 
        { 
            point ans=intersection(points[2],points[1],points[0],points[3]); 
            res=alldis(ans); www.zzzyk.com
            minn=min(minn,res); 
        } 
        printf("%.4lf\n",minn); 
    } 
    return 0; 

作者:ssslpk

补充:软件开发 , C++ ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,