当前位置:操作系统 > Unix/Linux >>

深入浅出分析Linux内核漏洞的问题

与Windows相比,Linux被认为具有更好的安全性和其他扩展性能。这些特性使得Linux在操作系统领域异军突起,得到越来越多的重视。随着Linux应用量的增加,其安全性也逐渐受到了公众甚或黑客的关注。那么,Linux是否真的如其支持厂商们所宣称的那样安全呢?本期我们请到了启明星辰信息技术有限公司积极防御实验室工程师赵伟,对Linux进行专业的漏洞技术分析。

  Linux内核精短、稳定性高、可扩展性好、硬件需求低、免费、网络功能丰富、适用于多种cpu等特性,使之在操作系统领域异军突起。其独特的魅力使它不仅在pc机上占据一定的份额,而且越来越多地被使用在各种嵌入式设备中,并被当作专业的路由器,防火墙,或者高端的服务器OS来使用。各种类型的Linux发行版本也如雨后春笋般冒了出来,国内更是掀起了Linux的使用热潮,很多易做图部门因安全需要也被要求使用Linux。正是因为Linux被越来越多地使用,其安全性也渐渐受到了公众的关注,当然,也更多地受到了黑客的关注。通常,我们讨论Linux系统安全都是从Linux安全配置的角度或者Linux的安全特性等方面来讨论的,而这一次我们转换一下视角,从Linux系统中存在的漏洞与这些漏洞产生的影响来讨论Linux的安全性。

  首先来说明一下这次我们讨论Linux系统安全的范围,其实通常我们所说的Linux是指GNU/Linux系统,Linux是系统中使用的操作系统内核。这一次我们重点从Linux系统内核中存在的几类非常有特点的漏洞来讨论Linux系统的安全性。

  权限提升类漏洞

  一般来说,利用系统上一些程序的逻辑缺陷或缓冲区溢出的手段,攻击者很容易在本地获得Linux服务器上管理员权限root;在一些远程的情况下,攻击者会利用一些以root身份执行的有缺陷的系统守护进程来取得root权限,或利用有缺陷的服务进程漏洞来取得普通用户权限用以远程登录服务器。目前很多Linux服务器都用关闭各种不需要的服务和进程的方式来提升自身的安全性,但是只要这个服务器上运行着某些服务,攻击者就可以找到权限提升的途径。下面是一个比较新的导致权限提升的漏洞。

  do_brk()边界检查不充分漏洞在2003年9月份被Linux内核开发人员发现,并在9月底发布的Linux kernel 2.6.0-test6中对其进行了修补。但是Linux内核开发人员并没有意识到此漏洞的威胁,所以没有做任何通报,一些安全专家与黑客却看到了此漏洞蕴涵的巨大威力。在2003年11月黑客利用rsync中一个未公开的堆溢出与此漏洞配合,成功地攻击了多台Debian与Gentoo Linux的服务器。

  下面让我们简单描述一下该漏洞。该漏洞被发现于brk系统调用中。brk系统调用可以对用户进程的堆的大小进行操作,使堆扩展或者缩小。而brk内部就是直接使用do_brk()函数来做具体的操作, do_brk()函数在调整进程堆的大小时既没有对参数len进行任何检查(不检查大小也不检查正负),也没有对addr+len是否超过TASK_SIZE做检查。这样我们就可以向它提交任意大小的参数len,使用户进程的大小任意改变以至可以超过TASK_SIZE的限制,使系统认为内核范围的内存空间也是可以被用户访问的,这样的话普通用户就可以访问到内核的内存区域。通过一定的操作,攻击者就可以获得管理员权限。这个漏洞极其危险,利用这个漏洞可以使攻击者直接对内核区域操作,可以绕过很多Linux系统下的安全保护模块。

  此漏洞的发现提出了一种新的漏洞概念,即通过扩展用户的内存空间到系统内核的内存空间来提升权限。当发现这种漏洞时,通过研究我们就认为内核中一定还会存在类似的漏洞,果然几个月后黑客们又在Linux内核中发现与brk相似的漏洞。通过这次成功的预测,更证实了对这种新型的概念型漏洞进行研究很有助于安全人员在系统中发现新的漏洞。

  拒绝服务类漏洞

  拒绝服务攻击是目前比较流行的攻击方式,它并不取得服务器权限,而是使服务器崩溃或失去响应。对Linux的拒绝服务大多数都无须登录即可对系统发起拒绝服务攻击,使系统或相关的应用程序崩溃或失去响应能力,这种方式属于利用系统本身漏洞或其守护进程缺陷及不正确设置进行攻击。

  另外一种情况,攻击者登录到Linux系统后,利用这类漏洞,也可以使系统本身或应用程序崩溃。这种漏洞主要由程序对意外情况的处理失误引起,如写临时文件之前不检查文件是否存在,盲目跟随链接等。

  下面,我们简单描述一下Linux在处理intel IA386 CPU中的寄存器时发生错误而产生的拒绝服务漏洞。该漏洞是因为IA386多媒体指令使用的寄存器MXCSR的特性导致的。由于IA386 CPU规定MXCSR寄存器的高16位不能有任何位被置位,否则CPU就会报错导致系统崩溃。为了保证系统正常运转,在linux系统中有一段代码专门对MXCSR的这个特性作处理,而这一段代码在特定的情况下会出现错误,导致MXCSR中的高16位没有被清零,使系统崩溃。如果攻击者制造了这种“极限”的内存情况就会对系统产生DoS效果。

  攻击者通过调用get_fpxregs函数可以读取多媒体寄存器至用户空间,这样用户就可以取得MXCSR寄存器的值。调用set_fpxregs函数可以使用用户空间提供的数据对MXCSR寄存器进行赋值。通过对MXCSR的高16位进行清0,就保证了IA386 CPU的这个特性。如果产生一种极限效果使程序跳过这一行,使MXCSR寄存器的高16位没有被清0,一旦MXCSR寄存器的高16位有任何位被置位,系统就会立即崩溃!

  因为利用这个漏洞攻击者还需要登录到系统,这个漏洞也不能使攻击者提升权限,只能达到DoS的效果,所以这个漏洞的危害还是比较小的。但是分析这个漏洞就没有意义了吗?其实由分析这个漏洞可以看出:Linux内核开发成员对这种内存拷贝时出现错误的情况没有进行考虑,以至造成了这个漏洞,分析了解了这个漏洞后,在漏洞挖掘方面也出现了一种新的类型,使我们在以后的开发中可以尽量避免这种情况。

  接下来让我们看一种Linux内核算法上出现的漏洞。先来简单介绍一下这个漏洞,当Linux系统接收到攻击者经过特殊构造的包后,会引起hash表产生冲突导致服务器资源被耗尽。这里所说的hash冲突就是指:许多数值经过某种hash算法运算以后得出的值相同,并且这些值都被储存在同一个hash槽内,这就使hash表变成了一个单向链表。而对此hash表的插入操作会从原来的复杂度O(n)变为O(n*n)。这样就会导致系统消耗巨大的cpu资源,从而产生了DoS攻击效果。

  我们先看一下在linux中使用的hash算法,这个算法用在对Linux route catch的索引与分片重组的操作中。在今年五月Rice University计算机科学系的Scott A. Crosby与Dan S. Wallach提出了一种新的低带宽的DoS攻击方法,即针对应用程序所使用的hash算法的脆弱性进行攻击。这种方法提出:如果应用程序使用的hash算法存在弱点,也就是说hash算法不能有效地把数据进行散列,攻击者就可以通过构造特殊的值使hash算法产生冲突引起DoS攻击。

  202

  203 static __inline__ unsigned rt_hash_code(u32 daddr, u32 saddr, u8 tos)

  204 {

  205 unsigned hash = ((daddr & 0xF0F0F0F0) >> 4) │

  206 ((daddr & 0x0F0F0F0F) << 4);

  207 hash ^= saddr ^ tos;

  208 hash ^= (hash >> 16);

  209 return (hash ^ (hash >> 8)) & rt_hash_mask;

  210 }

  以上的代码就是Linux对ip包进行路由或者重组时使用的算法。此算法由于过于简单而不能把route缓存进行有效的散列,从而产生了DoS漏洞。下面我们来分析一下此函数。

  203行为此函数的函数名与入口参数,u32 daddr为32位的目的地址,而u32 saddr为32位的原地址,tos为协议。

  205行-206行是把目标地址前后字节进行转换。

  207行把原地址与tos进行异或后再与hash异或然后再赋值给hash。

  208行把hash的值向右偏移16位然后与hash异或再赋值给hash。

  209行是此函数返回hash与它本身向右偏移8位的值异或,然后再跟rt_hash_mask进行与操作的值。

  这种攻击是一种较为少见的拒绝服务方式,因为它利用了系统本身的算法中的漏洞。该漏洞也代表了一种新的漏洞发掘的方向,就是针对应用软件或者系统使用的hash算法进行漏洞挖掘。因此,这种针对hash表攻击的方法对不仅对Linux,而且会对很多应用软件产生影响,比如说Perl5在这个perl的版本中使用的hash算法就容易使攻击者利用精心筛选的数据,使用perl5进行编程的应用程序使用的hash表产生hash冲突,包括一些代理服务器软件,甚至一些IDS软件,防火墙等,因使用的是Linux内核都会被此种攻击影响。

  Linux内核中的整数溢出漏洞

  Linux Kernel 2.4 NFSv3 XDR处理器例程远程拒绝服务漏洞在2003年7月29日公布,影响Linux Kernel 2.4.21以下的所有Linux内核版本。

  该漏洞存在于XDR处理器例程中,相关内核源代码文件为nfs3xdr.c. 此漏洞是由于一个整形漏洞引起的(正数/负数不匹配)。攻击者可以构造一个特殊的XDR头(通过设置变量int size为负数)发送给Linux系统即可触发此漏洞。当Linux系统的NFSv3 XDR处理程序收到这个被特殊构造的包时,程序中的检测语句会错误地判断包的大小,从而在内核中拷贝巨大的内存,导致内核数据被破坏,致使Linux系统崩溃。

  漏洞代码:

  static inline u32 *

  decode_fh(u32 *p, struct svc_fh *fhp)

  {

  int size;

  fh_init(fhp, NFS3_FHSIZE);

  size = ntohl(*p++);

  if (size > NFS3_FHSIZE)

  return NULL;

  memcpy(&fhp->fh_handle.fh_base, p, size); fhp->fh_handle.fh_
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,