HDU1016-Prime Ring Problem(DFS)
Problem DescriptionA ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
分析:
题意:输入正整数n,把整数1,2,3,…,n组成一个环,使得相邻两个整数之和均为素
数。输出时从整数1开始逆时针排列。同一个环应恰好输出一次。
素数环问题的程序实际上主要由求素数和整数1,2,3,…,n的排列构成。
运用DFS模型来回溯、其处理效率提高、看代码就能明白整个处理过程。
#include<iostream> #include<string.h> #include<stdio.h> #include<ctype.h> #include<algorithm> #include<stack> #include<queue> #include<set> #include<math.h> #include<vector> #include<map> #include<deque> #include<list> using namespace std; bool is_prime(int x) //判数一个整数x是否是一个素数 { for(int i = 2; i*i <= x; i++) { if(x % i == 0) return 0; } return 1; } int n, A[50], isp[50], vis[50]; int w=1; void dfs(int p) { if(p == n && isp[A[0]+A[n-1]]) //递归边界,别忘测试第一个数和最后一个数 { for(int i = 0; i < n-1; i++) printf("%d ", A[i]); printf("%d\n",A[n-1]); } else for(int i = 2; i <= n; i++) //尝试放置每个数i if(!vis[i] && isp[i+A[p-1]]) { //如果i没有用过,并且与前一个数之和为素数 A[p] = i; vis[i] = 1; //设置标记 dfs(p+1); vis[i] = 0; //清除标记 } } int main() { while(scanf("%d", &n)!=EOF) { for(int i = 2; i <= n*2; i++) isp[i] = is_prime(i); memset(vis, 0, sizeof(vis)); A[0] = 1; printf("Case %d:\n",w++); dfs(1); printf("\n"); } return 0; }
补充:软件开发 , C++ ,