一步一图一代码,一定要让你真正彻底明白红黑树
作者:July 二零一一年一月九日
-----------------------------
本文参考:
I、 The Art of Computer Programming Volume I
II、 Introduction to Algorithms, Second Edition
III、The Annotated STL Sources
IV、 Wikipedia
V、 Algorithms In C Third EditionVI、 本人写的关于红黑树的前三篇文章:
第一篇:教你透彻了解红黑树:
http://www.zzzyk.com/kf/201104/87322.html
第二篇:红黑树算法的层层剖析与逐步实现
http://www.zzzyk.com/kf/201104/87321.html
第三篇:教你彻底实现红黑树:红黑树的c源码实现与剖析
html">http://www.zzzyk.com/kf/201104/87323.html
---------------------------------------------
前言:
1、有读者反应,说看了我的前几篇文章,对红黑树的了解还是不够透彻。
2、我个人觉得,如果我一步一步,用图+代码来阐述各种插入、删除情况,可能会更直观易懂。
3、既然写了红黑树,那么我就一定要把它真正写好,让读者真正彻底明白红黑树。本文相对我前面红黑树相关的3篇文章,主要有以下几点改进:
1.图、文字叙述、代码编写,彼此对应,明朗而清晰。
2.宏观总结,红黑树的性质与插入、删除情况的认识。
3.代码来的更直接,结合图,给你最直观的感受,彻底明白红黑树。ok,首先,以下几点,你现在应该是要清楚明白了的:
I、红黑树的五个性质:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
II、红黑树插入的几种情况:
情况1,z的叔叔y是红色的。
情况2:z的叔叔y是黑色的,且z是右孩子
情况3:z的叔叔y是黑色的,且z是左孩子III、红黑树删除的几种情况。
情况1:x的兄弟w是红色的。
情况2:x的兄弟w是黑色的,且w的俩个孩子都是黑色的。
情况3:x的兄弟w是黑色的,且w的左孩子是红色,w的右孩子是黑色。
情况4:x的兄弟w是黑色的,且w的右孩子是红色的。除此之外,还得明确一点:
IV、我们知道,红黑树插入、或删除结点后,
可能会违背、或破坏红黑树的原有的性质,
所以为了使插入、或删除结点后的树依然维持为一棵新的红黑树,
那就要做俩方面的工作:
1、部分结点颜色,重新着色
2、调整部分指针的指向,即左旋、右旋。V、并区别以下俩种操作:
1)红黑树插入、删除结点的操作,RB-INSERT(T, z),RB-DELETE(T, z)
2).红黑树已经插入、删除结点之后,
为了保持红黑树原有的红黑性质而做的恢复与保持红黑性质的操作。
如RB-INSERT-FIXUP(T, z),RB-DELETE-FIXUP(T, x)以上这5点,我已经在我前面的2篇文章,都已阐述过不少次了,希望,你现在已经透彻明了。
---------------------------------------------------------------------
本文,着重图解分析红黑树插入、删除结点后为了维持红黑性质而做修复工作的各种情况。
[下文各种插入、删除的情况,与我的第二篇文章,红黑树算法的实现与剖析相对应]ok,开始。
一、在下面的分析中,我们约定:
要插入的节点为,N
父亲节点,P
祖父节点,G
叔叔节点,U
兄弟节点,S如下图所示,找一个节点的祖父和叔叔节点:
node grandparent(node n) //祖父{
return n->parent->parent;
}
node uncle(node n) //叔叔{
if (n->parent == grandparent(n)->left)
return grandparent(n)->right;
else
return grandparent(n)->left;
}
二、红黑树插入的几种情况
情形1: 新节点N位于树的根上,没有父节点
void insert_case1(node n) {
if (n->parent == NULL)
n->color = BLACK;
else
insert_case2(n);
}情形2: 新节点的父节点P是黑色
void insert_case2(node n) {
if (n->parent->color == BLACK)
return; /* 树仍旧有效 */
else
insert_case3(n);
}
情形3:父节点P、叔叔节点U,都为红色,
[对应第二篇文章中,的情况1:z的叔叔是红色的。]
void insert_case3(node n) {
if (uncle(n) != NULL && uncle(n)->color == RED) {
n->parent->color = BLACK;
uncle(n)->color = BLACK;
grandparent(n)->color = RED;
insert_case1(grandparent(n)); //因为祖父节点可能是红色的,违反性质4,递归情形1.
}
else
insert_case4(n); //否则,叔叔是黑色的,转到下述情形4处理。此时新插入节点N做为P的左子节点或右子节点都属于上述情形3,上图仅显示N做为P左子的情形。
情形4: 父节点P是红色,叔叔节点U是黑色或NIL;
插入节点N是其父节点P的右孩子,而父节点P又是其父节点的左孩子。
[对应我第二篇文章中,的情况2:z的叔叔是黑色的,且z是右孩子]
void insert_case4(node n) {
if (n == n->parent->right && n->parent == grandparent(n)->left) {
rotate_left(n->parent);
n = n->left;
} else if (n == n->parent->left && n->parent == grandparent(n)->right) {
rotate_right(n->parent);
n = n->right;
}
insert_case5(n); //转到下述情形5处理。
情形5: 父节点P是红色,而叔父节点U 是黑色或NIL,
要插入的节点N 是其父节点的左孩子,而父节点P又是其父G的左孩子。
[对应我第二篇文章中,情况3:z的叔叔是黑色的,且z是左孩子。]
void insert_case5(node n) {
n->parent->color = BLACK;
grandparent(n)->color = RED;
if (n == n->parent->left && n->parent == grandparent(n)->left) {
rotate_right(grandparent(n));
} else {
/* 反情况,N 是其父节点的右孩子,而父节点P又是其父G的右孩子 */
rotate_left(grandparent(n));
}
}
三、红黑树删除的几种情况
上文我们约定,兄弟节点设为S,我们使用下述函数找到兄弟节点:
struct node * sibling(struct node *n) //找兄弟节点
{
&nbs
补充:软件开发 , C语言 ,