当前位置:编程学习 > C/C++ >>

c语言程序设计 迷宫问题

3 迷宫问题 (4人)

问题描述:

以一个m×n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。

实现要求

⑴ 实现一个以链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出,其中:(i,j)指示迷宫中的一个坐标,d表示走到下一坐标的方向。

⑵ 编写递归形式的算法,求得迷宫中所有可能的通路;

⑶ 以方阵形式输出迷宫及其通路。

[测试数据]

迷宫的测试数据如下:左上角(1,1)为入口,右下角(8,9)为出口。

1 2 3 4 5 6 7 8

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

1

0

1

0

1

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1

0

1

1

1

1

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0

0

0

0

0

实现提示

计算机解迷宫通常用的是“穷举求解”方法,即从入口出发,顺着某一个方向进行探索,若能走通,则继续往前进;否则沿着原路退回,换一个方向继续探索,直至出口位置,求得一条通路。假如所有可能的通路都探索到而未能到达出口,则所设定的迷宫没有通路。

可以二维数组存储迷宫数据,通常设定入口点的下标为(1,1),出口点的下标为(m,n)。为处理方便起见,可在迷宫的四周加一圈障碍。对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。

答案:用堆栈解决一个有意思的问题,定义一个二维数组:

int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, };

它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的路线。程序如下:

例 12.3. 用深度优先搜索解迷宫问题

#include <stdio.h> #define MAX_ROW 5 #define MAX_COL 5 struct point { int row, col; } stack[512]; int top = 0; void push(struct point p) { stack[top++] = p; } struct point pop(void) { return stack[--top]; } int is_empty(void) { return top == 0; } int maze[MAX_ROW][MAX_COL] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; void print_maze(void) { int i, j; for (i = 0; i < MAX_ROW; i++) { for (j = 0; j < MAX_COL; j++) printf("%d ", maze[i][j]); putchar('\n'); } printf("*********\n"); } struct point predecessor[MAX_ROW][MAX_COL] = { {{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}}, {{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}}, {{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}}, {{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}}, {{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}}, }; void visit(int row, int col, struct point pre) { struct point visit_point = { row, col }; maze[row][col] = 2; predecessor[row][col] = pre; push(visit_point); } int main(void) { struct point p = { 0, 0 }; maze[p.row][p.col] = 2; push(p); while (!is_empty()) { p = pop(); if (p.row == MAX_ROW - 1 /* goal */ && p.col == MAX_COL - 1) break; if (p.col+1 < MAX_COL /* right */ && maze[p.row][p.col+1] == 0) visit(p.row, p.col+1, p); if (p.row+1 < MAX_ROW /* down */ && maze[p.row+1][p.col] == 0) visit(p.row+1, p.col, p); if (p.col-1 >= 0 /* left */ && maze[p.row][p.col-1] == 0) visit(p.row, p.col-1, p); if (p.row-1 >= 0 /* up */ && maze[p.row-1][p.col] == 0) visit(p.row-1, p.col, p); print_maze(); } if (p.row == MAX_ROW - 1 && p.col == MAX_COL - 1) { printf("(%d, %d)\n", p.row, p.col); while (predecessor[p.row][p.col].row != -1) { p = predecessor[p.row][p.col]; printf("(%d, %d)\n", p.row, p.col); } } else printf("No path!\n"); return 0; }

运行结果如下:

2 1 0 0 0 2 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 0 0 0 0 0 1 1 1 0 0 0 0 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 0 0 0 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 0 0 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 0 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 0 0 0 2 1 0 1 0 2 2 2 0 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 0 0 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 0 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 2 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 2 2 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 2 2 2 1 2 1 2 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 0 2 2 2 1 0 ********* 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0 ********* 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 ********* (4, 4) (3, 4) (2, 4) (1, 4) (0, 4) (0, 3) (0, 2) (1, 2) (2, 2) (2, 1) (2, 0) (1, 0) (0, 0)

这次堆栈里的元素是结构体类型的,用来表示迷宫中一个点的x和y座标。我们用一个新的数据结构保存走迷宫的路线,每个走过的点都有一个前趋(Predecessor)点,表示是从哪儿走到当前点的,比如predecessor[4][4]是座标为(3, 4)的点,就表示从(3, 4)走到了(4, 4),一开始predecessor的各元素初始化为无效座标(-1, -1)。在迷宫中探索路线的同时就把路线保存在predecessor数组中,已经走过的点在maze数组中记为2防止重复走,最后找到终点时就根据predecessor数组保存的路线从终点打印到起点。为了帮助理解,我把这个算法改写成伪代码(Pseudocode)如下:

将起点标记为已走过并压栈; while (栈非空) { 从栈顶弹出一个点p; if (p这个点是终点) break; 否则沿右、下、左、上四个方向探索相邻的点 if (和p相邻的点有路可走,并且还没走过) 将相邻的点标记为已走过并压栈,它的前趋就是p点; } if (p点是终点) { 打印p点的座标; while (p点有前趋) { p点 = p点的前趋; 打印p点的座标; } } else 没有路线可以到达终点;

我在while循环的末尾插了打印语句,每探索一步都打印出当前迷宫的状态(标记了哪些点),从打印结果可以看出这种搜索算法的特点是:每次探索完各个方向相邻的点之后,取其中一个相邻的点走下去,一直走到无路可走了再退回来,取另一个相邻的点再走下去。这称为深度优先搜索(DFS,Depth First Search)。探索迷宫和堆栈变化的过程如下图所示。

图 12.2. 深度优先搜索


图中各点的编号表示探索顺序,堆栈中保存的应该是座标,我在画图时为了直观就把各点的编号写在堆栈里了。可见正是堆栈后进先出的性质使这个算法具有了深度优先的特点。如果在探索问题的解时走进了死胡同,则需要退回来从另一条路继续探索,这种思想称为回溯(Backtrack),一个典型的例子是很多编程书上都会讲的八皇后问题。

最后我们打印终点的座标并通过predecessor数据结构找到它的前趋,这样顺藤摸瓜一直打印到起点。那么能不能从起点到终点正向打印路线呢?在上一节我们看到,数组支持随机访问也支持顺序访问,如果在一个循环里打印数组,既可以正向打印也可以反向打印。但predecessor这种数据结构却有很多限制:

  1. 不能随机访问一条路线上的任意点,只能通过一个点找到另一个点,通过另一个点再找第三个点,因此只能顺序访问。

  2. 每个点只知道它的前趋是谁,而不知道它的后继(Successor)是谁,所以只能反向顺序访问。

上一个:数据结构的算法如何变成C语言程序
下一个:java中怎么遍历HashMap

CopyRight © 2012 站长网 编程知识问答 www.zzzyk.com All Rights Reserved
部份技术文章来自网络,