受限的玻尔兹曼机
1 A Tutorial on Stochastic Approximation Algorithms for Training Restricted Boltzmann Machines and Deep Belief Nets
2 Inductive Principles for Learning Restricted Boltzmann Machines
3 Training products of experts by minimizing contrastive divergence
4 受限波尔兹曼机简介
import matplotlib.pylab as plt import numpy as np import random from scipy.linalg import norm import PIL.Image class Rbm: def __init__(self,n_visul, n_hidden, max_epoch = 50, batch_size = 110, penalty = 2e-4, anneal = False, w = None, v_bias = None, h_bias = None): self.n_visible = n_visul self.n_hidden = n_hidden self.max_epoch = max_epoch self.batch_size = batch_size self.penalty = penalty self.anneal = anneal if w is None: self.w = np.random.random((self.n_visible, self.n_hidden)) * 0.1 if v_bias is None: self.v_bias = np.zeros((1, self.n_visible)) if h_bias is None: self.h_bias = np.zeros((1, self.n_hidden)) def sigmod(self, z): return 1.0 / (1.0 + np.exp( -z )) def forward(self, vis): #if(len(vis.shape) == 1): #vis = np.array([vis]) #vis = vis.transpose() #if(vis.shape[1] != self.w.shape[0]): vis = vis.transpose() pre_sigmod_input = np.dot(vis, self.w) + self.h_bias return self.sigmod(pre_sigmod_input) def backward(self, vis): #if(len(vis.shape) == 1): #vis = np.array([vis]) #vis = vis.transpose() #if(vis.shape[0] != self.w.shape[1]): back_sigmod_input = np.dot(vis, self.w.transpose()) + self.v_bias return self.sigmod(back_sigmod_input) def batch(self): eta = 0.1 momentum = 0.5 d, N = self.x.shape num_batchs = int(round(N / self.batch_size)) + 1 groups = np.ravel(np.repeat([range(0, num_batchs)], self.batch_size, axis = 0)) groups = groups[0 : N] perm = range(0, N) random.shuffle(perm) groups = groups[perm] batch_data = [] for i in range(0, num_batchs): index = groups == i batch_data.append(self.x[:, index]) return batch_data def rbmBB(self, x): self.x = x eta = 0.1 momentum = 0.5 W = self.w b = self.h_bias c = self.v_bias Wavg = W bavg = b cavg = c Winc = np.zeros((self.n_visible, self.n_hidden)) binc = np.zeros(self.n_hidden) cinc = np.zeros(self.n_visible) avgstart = self.max_epoch - 5; batch_data = self.batch() num_batch = len(batch_data) oldpenalty= self.penalty t = 1 errors = [] for epoch in range(0, self.max_epoch): err_sum = 0.0 if(self.anneal): penalty = oldpenalty - 0.9 * epoch / self.max_epoch * oldpenalty for batch in range(0, num_batch): num_dims, num_cases = batch_data[batch].shape data = batch_data[batch] #forward ph = self.forward(data) ph_states = np.zeros((num_cases, self.n_hidden)) ph_states[ph > np.random.random((num_cases, self.n_hidden))] = 1 #backward nh_states = ph_states neg_data = self.backward(nh_states) neg_data_states = np.zeros((num_cases, num_dims)) neg_data_states[neg_data > np.random.random((num_cases, num_dims))] = 1 #forward one more time neg_data_states = neg_data_states.transpose() nh = self.forward(neg_data_states) nh_states = np.zeros((num_cases, self.n_hidden)) nh_states[nh > np.random.random((num_cases, self.n_hidden))] = 1 #update weight and biases dW = np.dot(data, ph) - np.dot(neg_data_states, nh) dc = np.sum(data, axis = 1) - np.sum(neg_data_states, axis = 1) db = np.sum(ph, axis = 0) - np.sum(nh, axis = 0) Winc = momentum * Winc + eta * (dW / num_cases - self.penalty * W) binc = momentum * binc + eta * (db / num_cases); cinc = momentum * cinc + eta * (dc / num_cases); W = W + Winc b = b + binc c = c + cinc self.w = W self.h_bais = b self.v_bias = c if(epoch > avgstart): Wavg -= (1.0 / t) * (Wavg - W) cavg -= (1.0 / t) * (cavg - c) bavg -= (1.0 / t) * (bavg - b) t += 1 else: Wavg = W bavg = b cavg = c #accumulate reconstruction error err = norm(data - neg_data.transpose()) err_sum += err print epoch, err_sum errors.append(err_sum) self.errors = errors self.hiden_value = self.forward(self.x) h_row, h_col = self.hiden_value.shape hiden_states = np.zeros((h_row, h_col)) hiden_states[self.hiden_value > np.random.random((h_row, h_col))] = 1 self.rebuild_value = self.backward(hiden_states) self.w = Wavg self.h_bais = b self.v_bias = c def visualize(self, X): D, N = X.shape s = int(np.sqrt(D)) if s == int(np.floor(s)): num = int(np.ceil(np.sqrt(N))) a = np.zeros((num*s + num + 1, num * s + num + 1)) - 1.0 x = 0 y = 0 for i in range(0, N): z = X[:,i] z = z.reshape(s,s,order='F') z = z.transpose() a[x*s+1+x - 1:x*s+s+x , y*s+1+y - 1:y*s+s+y ] = z x = x + 1 if(x >= num): x = 0 y = y + 1 d = True else: a = X return a def readData(path): data = [] for line in open(path, 'r'): ele = line.split(' ') tmp = [] for e in ele: if e != '': tmp.append(float(e.strip(' '))) data.append(tmp) return data if __name__ == '__main__': data = readData('data.txt') data = np.array(data) data = data.transpose() rbm = Rbm(784, 100,max_epoch = 50) rbm.rbmBB(data) a = rbm.visualize(data) fig = plt.figure(1) ax = fig.add_subplot(111) ax.imshow(a) plt.title('original data') rebuild_value = rbm.rebuild_value.transpose() b = rbm.visualize(rebuild_value) fig = plt.figure(2) ax = fig.add_subplot(111) ax.imshow(b) plt.title('rebuild data') hidden_value = rbm.hiden_value.transpose() c = rbm.visualize(hidden_value) fig = plt.figure(3) ax = fig.add_subplot(111) ax.imshow(c) plt.title('hidden data') w_value = rbm.w d = rbm.visualize(w_value) fig = plt.figure(4) ax = fig.add_subplot(111) ax.imshow(d) plt.title('weight value(w)') plt.show()
补充:Web开发 , Python ,