sqrt(int x)
Question:
Implement int sqrt(int x).
Compute and return the square root of x.
Anwser 1: 二分法
[cpp]
class Solution {
public:
int sqrt(int x) {
if(x < 0) return -1; // assert(x >= 0);
long long x2 = (long long)x;
long long left = 0;
long long right = x2;
long long mid = 0;
while(left <= right){
mid = left + (right - left) / 2;
if(mid * mid == x2 || (mid * mid < x2 && (mid + 1) * (mid + 1) > x2)){
return (int)mid;
} else if(mid * mid < x2){
left = mid + 1;
} else{
right = mid - 1;
}
}
}
};
注意点:
1) 非负数判断,负数没有开平方根
2) 取值范围,mid = left + (right - left) / 2; 可能会超过int最大取值范围,因此需设mid类型为long long(C++没ulong)
Anwser 2: 牛顿迭代法
[cpp]
class Solution {
public:
int sqrt(int x) {
if(x < 0) return -1; // assert(x >= 0);
double n = x;
while(abs(n * n - x) > 0.0001){
n = (n + x / n) / 2;
}
return (int)n;
}
};
注意点:
求a的平方根问题,可以转化为x^2 - a = 0 求x值,进而 abc(x^2 -a) < 0.0001 (0.0001为接近精度)
令 f(x) = x^2 - a, f(x) 即是精度取值范围(无限趋近于0)
对 函数 f(x) 求导:
变换公式,得:
把 f(x) = x^2 - a 公式求导,导入得: Xn+1 = Xn - (Xn^2 - a) / (2Xn) = Xn - (Xn - a/Xn) / 2 = (Xn + a/Xn) / 2
其中, Xn+1 无限接近于 Xn, 即有: Xn = (Xn + a/Xn) / 2
Anwser 3: 火星人算法
[cpp]
#include <stdio.h>
int InvSqrt(int x)
{
float x2 = (float)x;
float xhalf = x2 / 2;
int i = *(int*) & x2; // get bits for floating VALUE
i = 0x5f375a86 - (i>>1); // gives initial guess y0
x2 = *(float*) & i; // convert bits BACK to float
x2 = x2 * (1.5f - xhalf * x2 * x2); // Newton step, repeating increases accuracy
x2 = x2 * (1.5f - xhalf * x2 * x2); // Newton step, repeating increases accuracy
x2 = x2 * (1.5f - xhalf * x2 * x2); // Newton step, repeating increases accuracy
printf("\n\n1/x = %d\n", (int)(1/x2));
return (int)(1/x2);
}
int main(){
//InvSqrt(65535);
InvSqrt(10);
InvSqrt(2147395599);
InvSqrt(1297532724);
return 0;
}
说明:
此方法传说非常高效,我是参考别人的float写的int(参数)
补充:软件开发 , C++ ,