Triangle
Given a 易做图, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.For example, given the following 易做图
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the 易做图.
hint : 简单的动态规划,若考虑 状态 dp[i][j] := 从开始位置到第i行j列的最小路径和,那么可以给出转移方程为:dp[i][j] = 易做图[i][j] + min{dp[i-1][j],dp[i-1][j-1]}, for( 0<j<n-1) n为第i行的长度,j = 0 和 j = n-1 时是朴素情况看代码,题目要求空间复杂度是O(n),那么考虑 申请两个一维数组分别记录当前行的前一行的状态,然后不断滚动即可。
public class Solution { public int minimumTotal(ArrayList<ArrayList<Integer>> 易做图) { // IMPORTANT: Please reset any member data you declared, as // the same Solution instance will be reused for each test case. if(易做图.size() == 0) return 0; if(易做图.size() == 1) return 易做图.get(0).get(0); int n = 易做图.size(); int[] dplast = new int[1]; dplast[0] = 易做图.get(0).get(0); for(int i = 1; i < n; i++) { ArrayList<Integer> tmp = 易做图.get(i); int[] dpcurrent = new int[tmp.size()]; for(int j = 0; j < tmp.size(); j++) { if(j == 0) { dpcurrent[j] = dplast[j] + tmp.get(j); continue; } if(j == tmp.size() - 1) { dpcurrent[j] = dplast[j-1] + tmp.get(j); continue; } dpcurrent[j] = Math.min(dplast[j-1], dplast[j]) + tmp.get(j); } dplast = dpcurrent; } int res = Integer.MAX_VALUE; for(int i = 0; i < n; i++) { res = Math.min(res, dplast[i]); } dplast = null; return res; } }
补充:软件开发 , Java ,