spoj 1811 Longest Common Substring (后缀自动机)
spoj 1811 Longest Common Substring (后缀自动机)题意:lcs。。求两个字符串的最长公共连续子串
解题思路:后缀自动机解法。对第一个字符串构造sam,将第二个字符串的字符依次加入sam去匹配。假如我们匹配s2[i]时,匹配到的最大值为temp,在sam上匹配到的位置为p,那当加入s2[i+1]时应该如何更新呢?显然,如果p有指向s2[i]的儿子,temp[i+1] = temp[i] +1,p更新为p->son[k]。如果没有,那么p就沿着fa走,直到p有指向s2[i+1]的儿子,或者p走到NULL。假如p走到了NULL,那么在s2[i+1]这个位置,我们没有匹配到任何字符,故temp[i+1] = 0 , p 走到root。否则,temp[i+1] = val[p] + 1,p更新为p->son[k]。这里temp[i+1]是不能更新为val[q]的(设q=p->son[k]),因为val[q] 并不一定等于val[p] +1,而s2[i]我们只能匹配到p(p沿着fa走,那么很显然,这一路过来的p都能与s2[i]匹配)。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std ; const int maxn = 250010 ; struct sam { int fa[maxn<<1] , c[26][maxn<<1] , val[maxn<<1] ; int dp[maxn<<1] , tot , last ; inline int new_node ( int step ) { int i ; val[++tot] = step ; fa[tot] = 0 ; for ( i = 0 ; i < 26 ; i ++ ) c[i][tot] = 0 ; return tot ; } void add ( int k ) { int i , p = last ; int np = new_node ( val[p] + 1 ) ; while ( p && !c[k][p] ) c[k][p] = np , p = fa[p] ; if ( !p ) fa[np] = 1 ; else { int q = c[k][p] ; if ( val[p] + 1 == val[q] ) fa[np] = q ; else { int nq = new_node ( val[p] + 1 ) ; for ( i = 0 ; i < 26 ; i ++ ) c[i][nq] = c[i][q] ; fa[nq] = fa[q] ; fa[q] = fa[np] = nq ; while ( p && c[k][p] == q ) c[k][p] = nq , p = fa[p] ; } } last = np ; } void build ( char *s , int len ) { tot = 0 ; last = new_node ( 0 ) ; int i ; for ( i = 0 ; i < len ; i ++ ) add ( s[i] - 'a' ) ; } int solve ( char *s ) { int len = strlen ( s ) , i ; int ret = 0 , pre = 0 ; int p = 1 ; memset ( dp , 0 , sizeof ( dp ) ) ; for ( i = 0 ; i < len ; i ++ ) { int k = s[i] - 'a' ; if ( c[k][p] ) pre ++ , p = c[k][p] ; else { while ( !c[k][p] && p ) p = fa[p] ; if ( p ) pre = val[p] + 1 , p = c[k][p] ; else p = 1 , pre = 0 ; } ret = max ( ret , pre ) ; } return ret ; } } suf ; char s[maxn] ; int main () { while ( scanf ( "%s" , s ) != EOF ) { suf.build ( s , strlen ( s ) ) ; scanf ( "%s" , s ) ; printf ( "%d\n" , suf.solve ( s ) ) ; } return 0 ; }
补充:软件开发 , C++ ,