当前位置:编程学习 > C/C++ >>

水文分析与计算——年均流量趋势检验(Mann-Kendall法、线性回归法)

[cpp] 
//年均流量趋势检验.h 
 
//年均流量Mann-Kendall法趋势分析 
void MannKendall() 

    using namespace std; 
    int S = 0;//检验的统计变量 
    double  VarS,//统计变量S的方差 
        Z ;//标准正态统计变量方差 
    S = 0; 
    for(int i = 0; i < Y; i++) 
        for(int j = i + 1; j < Y; j++) 
        { 
            if(YearQ[j]>YearQ[i]) S++; 
            if(YearQ[j]<YearQ[i]) S--; 
        } 
    VarS = 0; 
    VarS = Y*(Y - 1)*(2*Y + 5)/18.0; 
    if(S > 0) Z = (S - 1)/pow(VarS, 0.5); 
    if(S < 0) Z = (S + 1)/pow(VarS, 0.5); 
    cout<<"年均流量趋势检验——Mann-Kendall检验:"<<endl 
        <<"标准正态统计变量Z=  "<<Z<<endl 
        <<"Mann-Kendall检验通过请输入1,否则请关闭!"<<endl; 
    cin>>Z;//控制台停留 
    cout<<endl; 

 
 
//年均流量线性回归法法趋势分析 
double Normal(double z) 
{//返回标准正态分布的密度函数 
    double temp; 
    temp=exp((-1)*z*z/2)/sqrt(2*PI); 
    return temp;     

double NormSDist(const double z) 
{//返回标准正态分布的累积频率函数 
    if(z > 6) return 1; 
    if(z < -6) return 0;  
    static const double gamma =  0.231641900, 
        a1  =  0.319381530, 
        a2  = -0.356563782, 
        a3  =  1.781477973, 
        a4  = -1.821255978, 
        a5  =  1.330274429;  
    double k = 1.0 / (1 + fabs(z) * gamma); 
    double n = k * (a1 + k * (a2 + k * (a3 + k * (a4 + k * a5)))); 
    n = 1 - Normal(z) * n; 
    if(z < 0) 
        return 1.0 - n;      
    return n; 
}  
void XianXingJianYan() 
{//线性回归检验 
    using namespace std; 
    double AverageYearQ = 0, 
        AverageT = (1+Y)/2.0, 
        a, b,//待定回归系数 
        r = 0,//线性相关系数 
        t,//t统计量 
        sigmaT =0, 
        sigmaYearQ = 0,//均方差 
        NewYearQ[Y],//按升序排列的年均流量 
        Fn,//样本累积频率 
        F0,//理论累积频率 
        D_n_alpha = 0.202737,//显著水平为alpha且样本容量为n时的拒绝临界值 
        MaxD = 0,//max(|Fn - F0|) 
        temp, 
        sigmab = 0;//回归系数b标准方差 
//  int order;//升序排序年均流量 
    for(int i = 0; i < Y; i++) 
    { 
        AverageYearQ += YearQ[i]; 
    } 
    AverageYearQ /= Y; 
    for(int i = 0; i < Y; i++) 
    { 
        r += (i - AverageT)*(YearQ[i] - AverageYearQ); 
        sigmaT += pow(i - AverageT, 2); 
        sigmaYearQ += pow(YearQ[i] - AverageYearQ, 2); 
    } 
    r /= pow(sigmaT*sigmaYearQ, 0.5); 
    sigmaT = pow(sigmaT/(Y - 1), 0.5); 
    sigmaYearQ = pow(sigmaYearQ/(Y - 1), 0.5); 
    for(int i = 0; i < Y; i++) 
        NewYearQ[i] = YearQ[i]; 
    for(int i = 0; i < Y - 1; i++) 
    { 
        for(int j = i + 1; j < Y; j++) 
            if(NewYearQ[i] > NewYearQ[j]) 
            { 
                temp = NewYearQ[i]; 
                NewYearQ[i] = NewYearQ[j]; 
                NewYearQ[j] = temp; 
            } 
    } 
    for(int i = 0; i < Y; i++) 
    {  
        Fn = (double)(i+1)/(Y + 1); 
        F0 = NormSDist((NewYearQ[i] - AverageYearQ)/sigmaYearQ); 
        if(MaxD < fabs(Fn - F0)) MaxD = fabs(Fn - F0); 
    } 
    cout<<"年均流量趋势检验——线性回归检验:"<<endl 
        <<"正态分布K-S检验统计量D ="<<MaxD<<endl 
        <<"K-S检验拒绝临界值D(n, a)="<<D_n_alpha<<endl; 
    b = r*sigmaYearQ/sigmaT; 
    a = AverageYearQ - b*AverageT; 
    for(int i = 0; i < Y; i++) 
        sigmab += pow(YearQ[i] - (a + b*i), 2); 
    sigmab = pow(sigmab/(Y - 2), 0.5)/(pow(sigmaT, 2)*(Y - 1)); 
    t = b/sigmab; 
    cout<<"线性相关系数r = "<<r<<endl 
        <<"年均流量Q倚时序t的回归系数估计值分别为:"<<endl 
        <<"a = "<<a<<endl 
        <<"b = "<<b<<endl 
        <<"假设检验统计量t = "<<t&l
补充:软件开发 , C++ ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,