poj 3255 Roadblocks 次短路
这个题是求次短路。有个不错的解法,是根据一个结论,替换调最短路里面的一条边肯定能得到次短路。
那么,只要枚举所有边就可以了。比如,假设开始点为s,目标点是d,设最短路为dis(s,d)。对于边(u,v),
dis(s, u) + w(u, v) + dis(v, d) 大于dis(s, d),则该路径就可能是次短路。求出最小的大于dis(s,d)的值就可以了。
方式是从s开始和从d开始进行2次单源多终点最短路径算法。然后枚举边即可。
该算法可以这样理解。因为替换最短路径里面的边,路径的长度只会变大或者不变。
代码如下:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int MAX_N = 5000 + 10;
struct Edge
{
int nE;
int nDis;
Edge(int e, int d):nE(e), nDis(d) {}
};
vector<Edge> graph[MAX_N];
bool bVisit[MAX_N];
int nSDis[MAX_N];
int nEDis[MAX_N];
struct Node
{
int nN;
int nDis;
bool operator < (const Node& node) const
{
return nDis > node.nDis;
}
};
int ShortestPath(int nS, int nE, int* nDis, int nN)
{
priority_queue<Node> pq;
memset(bVisit, false, sizeof(bVisit));
for (int i = 1; i <= nN; i++)
{
nDis[i] = 0x7fffffff;
}
nDis[nS] = 0;
Node head;
head.nDis = 0, head.nN = nS;
pq.push(head);
while (pq.empty() == false)
{
Node head = pq.top();
pq.pop();
int nU = head.nN;
if (bVisit[nU]) continue;
bVisit[nU] = true;
for (int i = 0; i < graph[nU].size(); ++i)
{
int nV = graph[nU][i].nE;
int nLen = head.nDis + graph[nU][i].nDis;
if (nLen < nDis[nV])
{
nDis[nV] = nLen;
Node node;
node.nDis = nLen;
node.nN = nV;
pq.push(node);
}
}
}
return nDis[nE];
}
int Second(int nS, int nE, int nN)
{
int nShortest = ShortestPath(nS, nE, nSDis, nN);
ShortestPath(nE, nS, nEDis, nN);
int nAns = 0x7fffffff;
for (int i = 1; i <= nN; ++i)
{
for (int j = 0; j < graph[i].size(); ++j)
{
int nU = i;
int nV = graph[i][j].nE;
int nLen = nSDis[i] + graph[i][j].nDis + nEDis[nV];
if (nLen != nShortest)
{
nAns = min(nAns, nLen);
}
}
}
return nAns;
}
int main()
{
int nN, nR;
int nA, nB, nD;
while (scanf("%d%d", &nN, &nR) == 2)
{
for (int i = 1; i <= nN; ++i)
{
graph[i].clear();
}
while (nR--)
{
scanf("%d%d%d", &nA, &nB, &nD);
graph[nA].push_back(Edge(nB, nD));
graph[nB].push_back(Edge(nA, nD));
} www.zzzyk.com
printf("%d\n", Second(1, nN, nN));
}
return 0;
}
补充:软件开发 , C++ ,