节约空间的筛素数方法
求不超过n的所有素数,比较好的算法是埃拉托斯特尼筛法:给出要筛数值的范围n,找出以内的素数。先用2去筛,即把2留下,把2的倍数剔除掉;再用下一个质数,也就是3筛,把3留下,把3的倍数剔除掉;接下去用下一个质数5筛,把5留下,把5的倍数剔除掉;不断重复下去......。
这个算法非常快,但缺点是消耗内存,理论上n范围内的所有数都要保存在内存中。这个可以进行一个优化:每个数只要分配一位就可以了,毕竟我们只需知道这个数是否是素数。这里还可以进一步优化:我们只需保存所有奇数就行了(除2外的偶数都不是素数),因此,我们可以使用n/16的内存实现这个算法:
[cpp]
inline bool getBit(char* arr, size_t pos)
{
return (arr[pos / 8] & (1 << pos % 8)) != 0;
}
inline void setBit(char* arr, size_t pos)
{
arr[pos / 8] |= (1 << pos % 8);
}
void printPrimes(size_t n)
{
if (n < 2)
return;
char* arr = new char[(n + 15)/16];
memset(arr, 0, (n + 15)/16);
//printf("2");
size_t total = 1; //2
for (size_t curNum=3; curNum <= n; curNum+=2)
{
if (getBit(arr, curNum/2))
continue;
++total;
//printf(" %lu", curNum);
for (uint64 pos = (uint64)curNum*curNum/2; pos < n/2; pos += curNum)
{
setBit(arr, pos);
}
}
printf("\ntotal number: %lu\n", total);
delete [] arr;
}
在我的pc上求1亿内的质数刚好花了1秒钟,而只需分配6M多的内存就够了。
补充:软件开发 , C++ ,