POJ 3308 二分图最小点权覆盖 最大流
本题题意就是,公元XXXX年,地球跟外星人打仗,然后有一个n*m的网格,会有外星人降落到某些位置上,因为外星人比较猛,所以必须一下来就消灭他们,现在可以在某些行或者某些列的首部放一些激光枪。这些枪的特性就是你放在行的首部你就消灭这一行的敌人,放在列的首部就消灭一列的敌人。但是放置这些枪也需要一定的费用,这些费用已经给出来了,最后总费用是这些枪的费用之积,现在要求最小的这个费用。
看到积之后,我们可以转换为加法,就是取log,但是不知道数据是什么情况,会不会超过double,就试一下。
然后就能发现是一个二分图最小点权覆盖的模型了
然后就是建图,源点跟所有的行节点连边,值呢就是相应花费的log,然后列节点与汇点连边,值也为相应的花费的log,行与列的连边就代表着相应的外星人了,值为INF。
注意到INF不能太大,因为double的精度问题,INF如果位数太多,算最大流的时候由于有小数,小数点后如果有8位,小数点之前如果再有太多的位数,就会损失精度
最后的结果用exp函数求回来即可
[cpp]
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#define eps 1e-5
#define MAXN 111
#define MAXM 55555
#define INF 1000007
using namespace std;
struct node
{
int v;
double c, f;
int next, r;
}edge[MAXM];
int dist[MAXN], nm[MAXN], src, des, n;
int head[MAXN], e;
void add(int x, int y, double c)
{
edge[e].v = y;
edge[e].c = c;
edge[e].f = 0;
edge[e].r = e + 1;
edge[e].next = head[x];
head[x] = e++;
edge[e].v = x;
edge[e].c = 0;
edge[e].f = 0;
edge[e].r = e - 1;
edge[e].next = head[y];
head[y] = e++;
}
void rev_BFS()
{
int Q[MAXN], h = 0, t = 0;
for(int i = 1; i <= n; ++i)
{
dist[i] = MAXN;
nm[i] = 0;
}
Q[t++] = des;
dist[des] = 0;
nm[0] = 1;
while(h != t)
{
int v = Q[h++];
for(int i = head[v]; i != -1; i = edge[i].next)
{
if(edge[edge[i].r].c == 0 || dist[edge[i].v] < MAXN)continue;
dist[edge[i].v] = dist[v] + 1;
++nm[dist[edge[i].v]];
Q[t++] = edge[i].v;
}
}
}
void init()
{
e = 0;
memset(head, -1, sizeof(head));
}
double maxflow()
{
rev_BFS();
int u;
double total = 0;
int cur[MAXN], rpath[MAXN];
for(int i = 1; i <= n; ++i)cur[i] = head[i];
u = src;
while(dist[src] < n)
{
if(u == des) // find an augmenting path
{
double tf = INF;
for(int i = src; i != des; i = edge[cur[i]].v)
tf = min(tf, edge[cur[i]].c);
for(int i = src; i != des; i = edge[cur[i]].v)
{
edge[cur[i]].c -= tf;
edge[edge[cur[i]].r].c += tf;
edge[cur[i]].f += tf;
edge[edge[cur[i]].r].f -= tf;
}
total += tf;
u = src;
}
int i;
for(i = cur[u]; i != -1; i = edge[i].next)
if(edge[i].c > 0 && dist[u] == dist[edge[i].v] + 1)break;
if(i != -1) // find an admissible arc, then Advance
{
cur[u] = i;
rpath[edge[i].v] = edge[i].r;
u = edge[i].v;
}
else // no admissible arc, then relabel this vtex
{
if(0 == (--nm[dist[u]]))break; // GAP cut, Important!
cur[u] = head[u];
int mindist = n;
for(int j = head[u]; j != -1; j = edge[j].next)
if(edge[j].c > 0)mindist = min(mindist, dist[edge[j].v]);
dist[u] = mindist + 1;
++nm[dist[u]];
if(u != src)
u = edge[rpath[u]].v; // Backtrack
&n
补充:软件开发 , C++ ,