图的一系列算法(待续)
#include<iostream> using namespace std; #define INFINITY INT_MAX #define MAX_VERTEX_NUM 20 typedef enum {DG, DN, UDG, UDN} GraphKind; //邻接矩阵 typedef struct ArcCell { int key; //对于无权图,用1或0表示相邻否,对带权图,则为权值类型 } ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //这种定义数组的方式一定要记住 typedef struct { int vexs[MAX_VERTEX_NUM]; AdjMatrix arcs; int vexnum,arcnum; //图的当前定点数和弧边数 GraphKind kind; }MGraph; //邻接表 typedef struct ArcNode { int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode { int key; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertices; int vexnum,arcnum; GraphKind kind; } ALGraph; void CreateUD(MGraph &G) //用邻接矩阵无向图 { int i,j; cout<<"Input vexnum:"<<endl; cin>>G.vexnum; cout<<"Input arcnum:"<<endl; cin>>G.arcnum; for( i=0; i<G.vexnum; ++i) { for( j=0; j<G.vexnum; ++j) { G.arcs[i][j].key = 0; } } int v1,v2; for( int k=0; k<G.arcnum; ++k) { cout<<"Input two index:"<<endl; cin>>v1>>v2; G.arcs[v1][v2].key=1; G.arcs[v2][v1].key = G.arcs[v1][v2].key; //有向图和无向图的区别 } cout<<"Graph:"<<endl; for( i=0; i<G.vexnum; ++i) { for( j=0; j<G.vexnum; ++j) { cout<<G.arcs[i][j].key<<" "; } cout<<endl; } } void CreateDG(ALGraph &G) //用邻接表创建有向图 { int i; cout<<"Input vexnum:"<<endl; cin>>G.vexnum; cout<<"Input arcnum:"<<endl; cin>>G.arcnum; for( i=0; i<G.vexnum; i++) { G.vertices[i].key=i; G.vertices[i].firstarc=NULL; } int v1,v2; for( int k=0; k<G.arcnum; ++k) { cout<<"Input two index:"<<endl; cin>>v1>>v2; if( v1==v2 ) { --k; cout<<"two index are same, renew input:"<<endl; continue; } ArcNode *node = (ArcNode *)malloc(sizeof(ArcNode)); node->adjvex=v2; node->nextarc=NULL; if(G.vertices[v1].firstarc==NULL) { G.vertices[v1].firstarc=node; } else { ArcNode *next=G.vertices[v1].firstarc; while(next->nextarc) { next=next->nextarc; } next->nextarc=node; } } for( int j=0; j<G.vexnum; j++) { cout<<G.vertices[j].key<<" :"; ArcNode *next=G.vertices[j].firstarc; while( next!=NULL) { cout<<next->adjvex<<" "; next=next->nextarc; } cout<<endl; } }
补充:软件开发 , C++ ,