Oracle硬解析的几个例子
Oracle硬解析的几个例子
为了验证SQL硬解析的场景,设置了下面六个测试用的例子:
1、没有绑定变量下的普通查询
2、测试绑定变量下的查询
3、测试绑定变量下sql有变化的查询
4、测试DML非绑定变量的解析
5、测试在过程中执行插入的时候非绑定变量的SQL解析
6、使用了绑定变量之后的,过程中的SQL解析情况
[sql] /** 测试例子1: 没有绑定变量下的普通查询 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; SELECT * FROM foo WHERE x = 100; SELECT * FROM foo WHERE x =999; SELECT * FROM foo WHERE x=10000; SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%'; [sql] /** 测试例子2: 测试绑定变量下的查询 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; VARIABLE temp NUMBER; exec :temp :=99; SELECT * FROM foo WHERE X = :temp; exec :temp :=100; SELECT * FROM foo WHERE X = :temp; exec :temp :=101; SELECT * FROM foo WHERE X = :temp; SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%'; /** [sql] 测试例子3: 测试绑定变量下sql有变化的查询 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; VARIABLE temp NUMBER; exec :temp :=99; SELECT * FROM foo WHERE X = :temp; exec :temp :=100; SELECT * FROM FOO WHERE X = :temp; exec :temp :=101; SELECT * FROM foo WHERE X = :temp; SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%'; [sql] /** 测试例子4: 测试DML非绑定变量的解析 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; INSERT INTO FOO VALUES(100,200); INSERT INTO FOO VALUES(101,201); INSERT INTO FOO VALUES(103,203); SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%'; [sql] /** 测试例子5: 测试在过程中执行插入的时候的SQL解析 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; BEGIN FOR I IN 1..3 LOOP IF I=1 THEN INSERT INTO FOO VALUES(1,1); ELSIF I=2 THEN INSERT INTO FOO VALUES(2,2); ELSIF I=3 THEN INSERT INTO FOO VALUES(3,3); END IF; END LOOP; END; / SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%'; [sql] /** 测试例子6: 使用了绑定变量之后的,过程中的SQL解析情况 **/ drop table foo purge; CREATE TABLE foo AS SELECT LEVEL AS x,100000-LEVEL AS y FROM dual CONNECT BY LEVEL<=100000; ALTER SYSTEM FLUSH SHARED_POOL; BEGIN FOR I IN 1..200 LOOP INSERT INTO FOO VALUES(I,100000-I); END LOOP; END; / SELECT T.SQL_TEXT, T.SQL_ID, T.EXECUTIONS, T.PARSE_CALLS FROM V$SQL T WHERE UPPER(T.SQL_TEXT) LIKE '%FOO%';
通过上述六个情况的试验,我们最终可以得到如下结论:
Oracle进行软解析的SQL必须是完全相同的,所谓相同的SQL必须是大小写一致(测试例子3),甚至是不能多一个或者少一个空格,这个结论可以通过修改测试例子3增加一个空格得到,结果就得到了不同的SQL_ID。只有完全一致的SQL,才可以得到相应的HASH值,从而才可以进行软解析。对于在SQL池中,我们需要分析在SQL池中出现的只有参数部分不同的SQL,如果出现了很多次,我们就有必要对其进行相应的变量绑定,从而降低硬解析成本,提高性能。