1015. Reversible Primes (20) PAT
题目的意思是:给出一个数N和一个基数D。首先这个数必须是素数。其次,将这个数(1)转为D进制数(2)将这个D进制数反转(3)将反转后的数再转为十进制数,这个十进制数依然是素数。 这样我们就输出“Yes”。
判断素数:一个数N,如果从2到sqrt(N)都不存在因子,则认为这个数是素数。 注意:0和1不是素数。
将十进制数转为n进制数:(待补充。。。)
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
#include<iostream> #include<string.h> #include<math.h> using namespace std; bool is_Prime(int a) { int i; if(a==0 || a==1) return false; //注意是i<=sqrt(),之前弄成i<sqrt,一直出错 for(i=2; i <= sqrt((double)a); i++){ if( a%i == 0) return false; } return true; } int change(int n,int d){ int a[100000]; memset(a,0,sizeof(a)); int total = 0; int j; int i; for(i=0; ; i++){ a[i] = n%d; n /= d; if(n==0) break; } for(j=0; j<=i; j++) { total = total*d + a[j]; } /*也可以这样写 do { total = total*d + n%d; n/=d; } while (n != 0); */ return total; } int main() { int N,D; while(cin>>N){ if( N<0 ) break; cin>>D; if( is_Prime(N) && is_Prime( change(N,D) )){ cout<<"Yes"<<endl; } else{ cout<<"No"<<endl; } } return 0; }
补充:软件开发 , C++ ,