sgu 176. Flow construction
题目大意:网中有些边必须满流,求最小可行流
题目思路:有上下界最小流,见周源《一种简易的方法求解流量有上下界的网络中网络流问题》,还有一种非二分的方法,但没有严格证明,所以我还是用的二分。
[cpp]
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<queue>
#include<algorithm>
#include<vector>
#include<stack>
#include<list>
#include<iostream>
#include<map>
using namespace std;
#define inf 0x3f3f3f3f
#define Max 110
int max(int a,int b)
{
return a>b?a:b;
}
int min(int a,int b)
{
return a<b?a:b;
}
int dis[Max],gap[Max],pre[Max],cur[Max],p[Max];
//int d[4][2]={0,1,1,0,0,-1,-1,0};
int in[Max],out[Max],id[Max*Max];
int n,m,s,t,eid;
int c[Max*Max];
struct node
{
int to,next,c;
}e[2*Max*Max],ee[2*Max*Max];
void addedge(int u,int v,int c)
{
ee[eid].to=v;
ee[eid].c=c;
ee[eid].next=p[u];
p[u]=eid++;
}
int ISAP(int st,int ed,int n,int count) ///起点,终点,顶点数
{
memset(dis, 0, sizeof(dis));
memset(gap, 0, sizeof(gap)); gap[0]=n;
memcpy(cur, p, sizeof(p)); ///memcpy!
int i,flag,v,u=pre[st]=st,maxflow=0,aug=inf; //puts("akk");
while(dis[st] < n)
{
for(flag=0,i=cur[u];i!=-1; i=e[i].next) /// cur[u]
if(e[i].c&& dis[u] == dis[e[i].to]+1)
{
flag = 1;
break;
}
if(flag)
{
if(aug > e[i].c)
aug = e[i].c;
v = e[i].to;
pre[v] = u;
cur[u] = i;
u = v;
if(u == ed)
{
for(u=pre[u]; 1;u=pre[u]) ///notice!
{
e[cur[u]].c -= aug;
e[cur[u]^1].c += aug;
if(u==st) break;
// puts("akkk");
}
maxflow += aug;
aug = inf;
}
}
else
{
int minx = n;
for(i=p[u]; i!=-1; i=e[i].next)
if(e[i].c&& dis[e[i].to]<minx)
{
minx = dis[e[i].to];
cur[u] = i;
}
if(--gap[dis[u]] == 0)
break;
dis[u] = minx+1;
gap[dis[u]]++;
u = pre[u];
}
}
// printf("Case %d:\n%d\n",count,maxflow);
// printf("%d\n",maxflow);
return maxflow;
}
int main()
{
int m,n,t,count=1,sum;
int u,v,i,j,k,x,y,tp;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(p,-1,sizeof(p));
eid=0;
sum=0;
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(id,-1,sizeof(id));
for(i=0;i<m;i++)
{
scanf("%d%d%d%d",&u,&v,&c[i],&tp);
if(tp==1)
{
in[v]+=c[i];
su
补充:软件开发 , C++ ,