(Visual C++)游戏开发笔记二十七 Direct3D 11入门级知识介绍
一、 Direct3D的初始化
初始化Direct3D,我们需要完成以下四个步骤:
1.定义我们需要检查的设备类型(device types)和特征级别(feature levels)
2.创建Direct3D设备,渲染设备(context)和交换链(swap chain)。
3.创建渲染目标(render target)。
4.设置视口(viewport)
这里只是给大家一个框架的概念,各个部分下面会详细展开讲解。
二、驱动设备类型与特征等级
在Direct3D 11中我们能使用的设备有硬件设备(hardware device),参考设备(reference device),软件驱动设备(software driver device), 以及WARP设备 (WARP device)。
硬件设备(hardware device)是一个运行在显卡上的D3D设备,在所有设备中运行速度是最快的。这将是我们日后讨论最多的一种类型。
参考设备(reference device)是用于没有可用的硬件支持时在CPU上进行渲染的设备。
简言之,参考设备就是利用软件,在CPU对硬件渲染设备的一个模拟。但是不幸的是,这种方式非常的低效,所以在开发过程中,没有其他可用选择的时候,我们才采用这种方式。比如新一代的DirectX发布了,市面上还没有支持这种新版本DirectX的硬件,我们在开发过程中就只能采用这种方式来跑了。
软件驱动设备(software driverdevice)是开发人员自己编写的用于Direct3D的渲染驱动软件。这种方式通常不推荐用于高性能或者对性能要求苛刻的应用程序,下面介绍的WARP设备将是更好的选择。
WARP设备(WARPdevice)是一种高效的CPU渲染设备,可以模拟现阶段所有的Direct3D特性。WARP使用了Windows Vista /Windows 7/Winodws 8中的Windows Graphic 运行库中高度优化过的代码作为支撑,这让这种方式出类拔萃,相比与上文提到的参考设备(reference device)模式更加优秀。WARP设备在配置不高的机器上面可以达到化腐朽为神奇的功效。在我们的硬件不支持实时应用程序(real-time application)的情况下,用WARP设备作为替补是一个明智的选择,因为相比而言,参考设备(reference device)的执行效率实在是无法令人恭维。即便如此,WARP设备的执行效率还是不能和硬件设备同日而语,毕竟它依旧是对硬件的一种模拟,即使这种模拟是非常高效的。
注意:这不是对设备类型一个完整的列举,还有很多细枝末节的设备类型,在这里没必要一一列举
Direct3D的特征等级用于指定需要设定的设备目标。在这个专栏之中,我们将针对三种设备,第一种当然是我们的Direct3D 11设备,第二种为Direct3D 10.1设备,第三种为Direct3D 10.0设备。再这三种设备都无法支持的情况下,我们再选择WARP设备或者参考设备作为后援。
下面贴出来的代码段1为后面我们需要用到的驱动类型和特征级别的一个声明。通过创建各种类型的数组,我们可以使用循环来尝试首先创建我们最需要的设备,然后若执行失败则继续创建其他的设备类型。浅墨记得我们之前提到过,Win32宏ARRAYSIZE能够用来返回一个数组的大小,Win32函数GetClientRect可以用来计算应用程序客户区的大小。算出来的值会用于设置之后的D3D设备渲染的宽度和高度。
另外,需要记住Win32应用程序是分客户区和非客户区的,我们仅能在客户区上进行渲染。
代码段1 指明驱动设备类型和特征等级
[cpp]
RECT dimensions;
GetClientRect( hwnd, &dimensions );
unsigned int width = dimensions.right - dimensions.left;
unsigned int height = dimensions.bottom - dimensions.top;
D3D_DRIVER_TYPE driverTypes[] =
{
D3D_DRIVER_TYPE_HARDWARE, D3D_DRIVER_TYPE_WARP,D3D_DRIVER_TYPE_SOFTWARE
};
unsigned int totalDriverTypes = ARRAYSIZE( driverTypes );
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0
};
unsigned int totalFeatureLevels = ARRAYSIZE( featureLevels );
RECT dimensions;
GetClientRect( hwnd, &dimensions );
unsigned int width = dimensions.right - dimensions.left;
unsigned int height = dimensions.bottom - dimensions.top;
D3D_DRIVER_TYPE driverTypes[] =
{
D3D_DRIVER_TYPE_HARDWARE, D3D_DRIVER_TYPE_WARP,D3D_DRIVER_TYPE_SOFTWARE
};
unsigned int totalDriverTypes = ARRAYSIZE( driverTypes );
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0
};
unsigned int totalFeatureLevels = ARRAYSIZE( featureLevels );
三、设备与交换链的创建
下一步便是创建一个交换链,交换链在Direct3D中为一个设备渲染目标的集合。每一个设备都有至少一个交换链,而多个交换链能够被多个设备所创建。一个交换目标可以为一个渲染和显示到屏幕上的颜色缓存(在后面会讨论),等等。
通常在游戏中有,有两种颜色缓存,分别叫做主缓存和辅助缓存,他们一起被称为前后台缓存组合。主缓存中的内容(前台缓存)会显示在屏幕上,而辅助缓存(后台缓存)用于绘制下一帧(真是两个好基友-o-)。
渲染的发生非常之快,屏幕的一部分可以在显示器完成显示更新之前,在先前的结果为基础上进行绘制。缓存之间的切换,可以进行一个良性的运作,前台在显示图像,后台正在为前台准备下一刻将要显示的图像,这样做可以避免很多棘手的问题,提高了效率。
这种技术在计算机图形学中叫做双缓冲(doublebuffering),或者叫页面翻转(page flipping)(这种技术我们之前的一系列Win32 GDI demo中使用得比较勤,研究了之前的demo的朋友们应该已经耳濡目染了吧)。一个交换链能拥有一个或者多个这样的缓冲。
代码段2中列出了创建一个交换链的代码。一个交换链的描述用来定义和创建符合我们需要的交换链。
代码段2 对交换链的设置
[cpp]
DXGI_SWAP_CHAIN_DESC swapChainDesc;
ZeroMemory( &swapChainDesc, sizeof( swapChainDesc ) );
swapChainDesc.BufferCount = 1;
swapChainDesc.BufferDesc.Width = width;
swapChainDesc.BufferDesc.Height = height;
swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferDesc.RefreshRate.Numerator = 60;
swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.OutputWindow = hwnd;
swapChainDesc.Windowed = true;
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;
DXGI_SWAP_CHAIN_DESC swapChainDesc;
ZeroMemory( &swapChainDesc, sizeof( swapChainDesc ) );
swapChainDesc.BufferCount = 1;
swapChainDesc.BufferDesc.Width = width;
swapChainDesc.BufferDesc.Height = height;
swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapChainDesc.BufferDesc.RefreshRate.Numerator = 60;
swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapChainDesc.OutputWindow = hwnd;
swapChainDesc.Windowed = true;
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;
这个范例中定义了D3D的多种取样属性,多重取样(Multisampling)是一种用于采样和平衡渲染像素的创建亮丽色彩变化之间的平滑过渡的一种技术。
缓存的使用和交换链的描述有大量的成员需要设置,但这些设置都是非常简单的。缓存的对交换链的使用是设置下DXGI_USAGE_RENDER_TARGET_OUTPUT,以便交换链能够用于输出,或者换句话说,它能被渲染。
下一步是创建渲染上下文,渲染设备,以及我们拥有的交换链描述。D3D设备一般都是设备本身和硬件之间的通信,而D3D上下文是一种描述设备如何绘制的渲染设备上下文,这也包含了渲染状态和其他的绘图信息。
正如我们讨论过的,交换链是设备和上下文将要绘制的渲染目标。
创建设备上下文,渲染上下文和交换链所需的代码在代码段3中详细列出了,.这段代码为下次内容即将展示的Direct3D 11 BlankWindows Demo的一个片段。
代码段3 Direct3D设备,设备上下文,以及交换链的创建
[cpp]
ID3D11Device device_;
ID3D11Context d3dContext_;
IDXGISwapChain swapChain_;
unsigned int creationFlags = 0;
#ifdef _DEBUG
creationFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif
HRESULT result;
unsigned int driver = 0;
for( driver = 0; driver < totalDriverTypes; ++driver )
{
result = D3D11CreateDeviceAndSwapChain( 0, driverTypes[driver],0,
creationFlags, featureL
补充:软件开发 , Vc ,