当前位置:编程学习 > C/C++ >>

经典算法研究系列:六、教你从头到尾彻底理解KMP算法

作者: July  、 saturnma     时间; 二零一一年一月一日

-----------------------

本文参考:数据结构(c语言版) 李云清等编著、算法导论
作者说明:本文写的糟,日后此KMP 算法还会写一个续集。为了让本经典算法研究系列保持连贯性,特没删除本文。

引言:
在文本编辑中,我们经常要在一段文本中某个特定的位置找出 某个特定的字符或模式。
由此,便产生了字符串的匹配问题。
本文由简单的字符串匹配算法开始,再到KMP算法,由浅入深,教你从头到尾彻底理解KMP算法。

来看算法导论一书上关于此字符串问题的定义:
假设文本是一个长度为n的数组T[1...n],模式是一个长度为m<=n的数组P[1....m]。
进一步假设P和T的元素都是属于有限字母表Σ.中的字符。

 

依据上图,再来\

解释下字符串匹配问题。目标是找出所有在文本T=abcabaabcaabac中的模式P=abaa所有出现。
该模式仅在文本中出现了一次,在位移s=3处。位移s=3是有效位移。

 

一、简单的字符串匹配算法

简单的字符串匹配算法用一个循环来找出所有有效位移,
该循环对n-m+1个可能的每一个s值检查条件P[1....m]=T[s+1....s+m]。

NAIVE-STRING-MATCHER(T, P)
1 n ← length[T]
2 m ← length[P]
3 for s ← 0 to n - m
4     do if P[1 ‥ m] = T[s + 1 ‥ s + m]         
      //对n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
5           then print "Pattern occurs with shift" s

\

简单字符串匹配算法,上图针对文本T=acaabc 和模式P=aab。
上述第4行代码,n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
所以,在最坏情况下,此简单模式匹配算法的运行时间为O((n-m+1)m)。

 

--------------------------------

下面我再来举个具体例子,并给出一具体运行程序:
对于目的字串target是banananobano,要匹配的字串pattern是nano,的情况,

下面是匹配过程,原理很简单,只要先和target字串的第一个字符比较,
如果相同就比较下一个,如果不同就把pattern右移一下,
之后再从pattern的每一个字符比较,这个算法的运行过程如下图。
//index表示的每n次匹配的情形。

\

#include<iostream>
#include<string>
using namespace std;
int match(const string& target,const string& pattern)
{
    int target_length = target.size();
    int pattern_length = pattern.size();
    int target_index = 0;
    int pattern_index = 0;
    while(target_index < target_length && pattern_index < pattern_length)
    {
        if(target[target_index]==pattern[pattern_index])
        {
            ++target_index;
            ++pattern_index;
        }
        else
        {
            target_index -= (pattern_index-1);
            pattern_index = 0;
        }
    }
    if(pattern_index == pattern_length)
    {
        return target_index - pattern_length;
    }
    else
    {
        return -1;
    }
}
int main()
{
    cout<<match("banananobano","nano")<<endl;
    return 0;
}

//运行结果为4。

 

上面的算法进间复杂度是O(pattern_length*target_length),
我们主要把时间浪费在什么地方呢,
观查index =2那一步,我们已经匹配了3个字符,而第4个字符是不匹配的,这时我们已经匹配的字符序列是nan,

此时如果向右移动一位,那么nan最先匹配的字符序列将是an,这肯定是不能匹配的,
之后再右移一位,匹配的是nan最先匹配的序列是n,这是可以匹配的。

如果我们事先知道pattern本身的这些信息就不用每次匹配失败后都把target_index回退回去,
这种回退就浪费了很多不必要的时间,如果能事先计算出pattern本身的这些性质,
那么就可以在失配时直接把pattern移动到下一个可能的位置,
把其中根本不可能匹配的过程省略掉,
如上表所示我们在index=2时失配,此时就可以直接把pattern移动到index=4的状态,
kmp算法就是从此出发。

 

二、KMP算法

1、 覆盖函数(overlay_function)

覆盖函数所表征的是pattern本身的性质,可以让为其表征的是pattern从左开始的所有连续子串的自我覆盖程度。
比如如下的字串,abaabcaba

\

由于计数是从0始的,因此覆盖函数的值为0说明有1个匹配,对于从0还是从来开始计数是偏好问题,

具体请自行调整,其中-1表示没有覆盖,那么何为覆盖呢,下面比较数学的来看一下定义,比如对于序列

a0a1...aj-1 aj

 

要找到一个k,使它满足

a0a1...ak-1ak=aj-kaj-k+1...aj-1aj

而没有更大的k满足这个条件,就是说要找到尽可能大k,使pattern前k字符与后k字符相匹配,k要尽可能的大,
原因是如果有比较大的k存在,而我们选择较小的满足条件的k,
那么当失配时,我们就会使pattern向右移动的位置变大,而较少的移动位置是存在匹配的,这样我们就会把可能匹配的结果丢失。

比如下面的序列,

\

在红色部分失配,正确的结果是k=1的情况,把pattern右移4位,如果选择k=0,右移5位则会产生错误。
计算这个overlay函数的方法可以采用递推,可以想象如果对于pattern的前j个字符,如果覆盖函数值为k

a0a1...ak-1ak=aj-kaj-k+1...aj-1aj
则对于pattern的前j+1序列字符,则有如下可能
⑴     pattern[k+1]==pattern[j+1] 此时overlay(j+1)=k+1=overlay(j)+1
⑵     pattern[k+1]≠pattern[j+1] 此时只能在pattern前k+1个子符组所的子串中找到相应的overlay函数,h=overlay(k),如果此时pattern[h+1]==pattern[j+1],则overlay(j+1)=h+1否则重复(2)过程.

 

下面给出一段计算覆盖函数的代码:

#include<iostream>
#include<string>
using namespace std;
void compute_overlay(const string& pattern)
{
    const int pattern_length = pattern.size();
    int *overlay_function = new int[pattern_length];
    int index;
    overlay_function[0] = -1;
    for(int i=1;i<pattern_length;++i)
    {
        index = overlay_function[i-1];
        //store previous fail position k to index;
       
        while(index>=0 && pattern[i]!=pattern[index+1])
        {
            index = overlay_function[index];
        }
        if(pattern[i]==pattern[index+1])
        {
            overlay_function[i] = index + 1; 
        }
        else
        {
            overlay_function[i] = -1;

补充:软件开发 , C语言 ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,