hdu 4491 Windmill Animation(几何+模拟)
给定平面上的n(n<=20)个点,不存在三点共线。然后每次用某条直线(原点及斜率)逆时针旋转,每碰到一个点后,更换原点跟斜率。求出前s个原点。考虑到n很小,可以模拟来搞。每次得到一个原点及斜率,然后构造出在直线上原点(O)的上方(rp)和下方(rn)两个点。然后依次每个不在该直线上的点,如果该点在直线上方,那么要达到该点逆时针旋转的角度为向量 rp->O 和向量 p->O的夹角。反之则是向量O->rp和向量O->rn的夹角。
#include<algorithm> #include<iostream> #include<cstring> #include<fstream> #include<sstream> #include<cstdlib> #include<vector> #include<string> #include<cstdio> #include<bitset> #include<queue> #include<stack> #include<cmath> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define debug puts("**debug**") #define LL long long #define PB push_back #define MP make_pair using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y; Point(double x=0, double y=0):x(x),y(y) { } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double angle(Vector v) { return atan2(v.y, v.x); } double torad(double ang) { return ang / 180 * PI; } void getLineGeneralEquation(const Point& p1, const Point& p2, double& a, double& b, double &c) { a = p2.y-p1.y; b = p1.x-p2.x; c = -a*p1.x - b*p1.y; } Point read_point() { Point a; scanf("%lf%lf", &a.x, &a.y); return a; } const int maxn = 30; int P, cas, ind, n, s, st, ans[maxn]; double ang; Point p[maxn]; int main() { scanf("%d", &P); while(P--) { scanf("%d%d%d%d%lf", &cas, &n, &s, &st, &ang); ang = torad(ang); FF(i, 1, n+1) { scanf("%d", &ind); p[ind] = read_point(); } int tot = 0, id1 = st, id2 = st; Point now = p[st]; while(tot < s) { int nxt; double a, b, c, tmp, tang, nxtang = 1e50; Point O = now, rp = O + Point(1000*cos(ang), 1000*sin(ang)) , rn = O - Point(1000*cos(ang), 1000*sin(ang)); getLineGeneralEquation(O, rp, a, b, c); FF(i, 1, n+1) if(i != id1 && i != id2) { tmp = a*p[i].x + b*p[i].y + c; if(tmp > 0) tang = Angle(rn-O, p[i]-O); else if(tmp < 0) tang = Angle(rp-O, p[i]-O); else tang = 0; if(dcmp(nxtang - tang) > 0) nxtang = tang, nxt = i; } ans[tot++] = nxt; ang = angle(now-p[nxt]); now = p[nxt]; id1 = id2; id2 = nxt; } printf("%d", cas); REP(i, tot) printf(" %d", ans[i]); puts(""); } return 0; }
补充:软件开发 , C++ ,