当前位置:编程学习 > C/C++ >>

0019算法笔记——0-1背包问题动态规划求解

  1、问题描述:
     给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
     形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
\
       2、最优性原理:
     设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:
\
     证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有
                                    ∑vizi > ∑viyi   (i=2,…,n)
     且                           w1y1+ ∑wizi<= c
     因此                       v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n) 
     说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。
       3、递推关系:
    设所给0-1背包问题的子问题
     \
     的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式:
\
     注:(3.4.3)式此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题处于两种状态之一:
    (1)背包剩余容量是j,没产生任何效益;
    (2)剩余容量j-wi,效益值增长了vi ;
     算法具体代码如下:
[cpp]  
//3d10-1 动态规划 背包问题  
#include "stdafx.h"  
#include <iostream>   
using namespace std;   
  
const int N = 4;  
  
void Knapsack(int v[],int w[],int c,int n,int m[][10]);  
void Traceback(int m[][10],int w[],int c,int n,int x[]);  
  
int main()  
{  
    int c=8;  
    int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始  
    int x[N+1];  
    int m[10][10];  
  
    cout<<"待装物品重量分别为:"<<endl;  
    for(int i=1; i<=N; i++)  
    {  
        cout<<w[i]<<" ";  
    }  
    cout<<endl;  
  
    cout<<"待装物品价值分别为:"<<endl;  
    for(int i=1; i<=N; i++)  
    {  
        cout<<v[i]<<" ";  
    }  
    cout<<endl;  
  
    Knapsack(v,w,c,N,m);  
  
    cout<<"背包能装的最大价值为:"<<m[1][c]<<endl;  
  
    Traceback(m,w,c,N,x);  
    cout<<"背包装下的物品编号为:"<<endl;  
    for(int i=1; i<=N; i++)  
    {  
        if(x[i]==1)  
        {  
            cout<<i<<" ";  
        }  
    }  
    cout<<endl;  
  
    return 0;  
}  
  
void Knapsack(int v[],int w[],int c,int n,int m[][10])  
{  
    int jMax = min(w[n]-1,c);//背包剩余容量上限 范围[0~w[n]-1]  
    for(int j=0; j<=jMax;j++)  
    {  
        m[n][j]=0;  
    }  
  
    for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]  
    {  
        m[n][j] = v[n];  
    }  
  
    for(int i=n-1; i>1; i--)  
    {  
        jMax = min(w[i]-1,c);  
        for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c  
        {  
            m[i][j] = m[i+1][j];//没产生任何效益  
        }  
  
        for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c  
        {  
            m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi   
        }  
    }  
    m[1][c] = m[2][c];  
补充:软件开发 , C++ ,
CopyRight © 2022 站长资源库 编程知识问答 zzzyk.com All Rights Reserved
部分文章来自网络,